Schlagwort: Drucken und Kaschieren

  • Resümee zur 1. Verpackungsdrucktagung 2015

    Resümee zur 1. Verpackungsdrucktagung 2015

    Am 26./27. November 2015 fand die erste Innoform Verpackungsdrucktagung in Osnabrück statt. Druckverfahren wachsen weiter zusammen, attestiert Stefan Beilenhoff in seinem live Interview nach der Tagung. Viele Veredler nutzen schon heute mehrere Druckverfahren, um eine optimale Wirtschaftlichkeit und trotzdem identische Druckergebnisse zu erhalten.

    Sowohl neue Druckfarben wie z.B. wasserbasierte Systeme oder auch PU-Druckfarben, wie Sie Dr. Hancke vorstellte, spielen dabei eine Rolle. Aber auch neue Trends wie gedruckte Elektronik werden uns Drucker mehr und mehr beschäftigen und neue Erlösquellen erschließen können, sagt Herr Rommel in seinem Vortrag und Interview.

    Schauen Sie selbst, was namhafte Experten im Nachgang zur Drucktagung sagten und hören Sie sich gerne das Finale von Karsten Schröder in ungekürzter Form an: http://www.innoform-coaching.de/pages/download/video.php

    VD
    Header Verpackungsdrucktagung
  • POP-Veranstaltung auf der ICE

    POP-Veranstaltung auf der ICE

    Die internationale Tagung speziell für den Verpackungsdruck findet im Rahmen der ICE in München statt www.printourpack.de.

  • Fragen und Antworten zu primären aromatischen Aminen in Druckfarben für Papierservietten und Lebensmittelverpackungen

    Fragen und Antworten zu primären aromatischen Aminen in Druckfarben für Papierservietten und Lebensmittelverpackungen

    Druckfarben für Papierservietten und andere Lebensmittelverpackungen aus Papier können primäre aromatische Amine (paA) enthalten. Einige paA weisen krebserzeugende und erbgutverändernde Eigenschaften auf. Bei längerem Kontakt mit Lebensmitteln können paA auf diese übergehen und dann vom Menschen aufgenommen werden. Das BfR empfiehlt, den bestehenden Grenzwert für den Übergang der als krebserzeugend eingestuften paA zu überprüfen.

    Eine kritische Bewertung der zur Verfügung stehenden Informationen lässt jedoch den Schluss zu, dass bei kurzfristigem Kontakt mit der Haut und mit Schleimhäuten (Lippen) sowie mit Lebensmitteln nicht mit einem zusätzlichen Gesundheitsrisiko zu rechnen ist.

    Das BfR hat am 17.12.2014 häufig gestellte Fragen zu primären aromatischen Aminen in Druckfarben zusammengestellt. Näherer Informationen können der folgenden Veröffentlichung entnommen werden: http://www.bfr.bund.de/cm/343/fragen-und-antworten-zu-primaeren-aromatischen-aminen-in-druckfarben-fuer-papierservietten-und-lebensmittelverpackungen.pdf

  • Das Inno-Meeting 2015 – Alles digital?

    Das Inno-Meeting 2015 – Alles digital?

    Am 10. / 11. Februar 2015 findet das 13. Inno-Meeting zu Trends für und mit Folienverpackungen statt. Dieses Mal werden wir die digitale Welt und ihre Auswirkungen auf die Folienverpackungen diskutieren. Wenn Sie einen Beitrag leisten möchten, ein beispielhaftes Produkt oder Ideen zu diesem Themenkomplex der „digitalen Folienverpackungswelt“ haben, Können Sie bis zm 30.9.2014 ihr Thema bei Karsten Schröder (KS@innoform.de) einreichen. Beispiele für Themenideen sind:

    • Digitale Haushaltsversorgung mit Lebensmitteln
    • Versand von flexiblen Verpackungen – Internet-Shopping für Lebensmittel und Konsumgüter
    • Die individualisierte Konsumverpackung – Druck Deine Verpackung selbst…
    • Drucken am Point of Purchase
    • Selbst designen von Lebensmitteln und Verpackungen

    Ihrer Kreativität sind keine Grenzen gesetzt – es muss nur
    mit Folien zu tun haben.

  • Dr. Wolfgang Neumann im Gespräch mit Karsten Schröder

    Dr. Wolfgang Neumann im Gespräch mit Karsten Schröder

    Auch in Vorbereitung auf unsere Tagung http://dk.innoform.de lohnt sich ein Blick auf dieses Video mit Dr. Neumann und Karsten Schröder. Es wurde im Rahmen der letzten Tagung in Osnabrück im März aufgenommen.  https://www.youtube.com/watch?v=-SQklpeYTjY&feature=player_embedded

  • Inno-Meeting 2014 Impressionen

    Inno-Meeting 2014 Impressionen

    Impressionen 12. Inno-Meeting 2014 Das ausgebuchte Inno-Meeting war auch 2014 wieder ein gelungener Saisonauftakt der Flexpacker, ihrer Kunden und Zulieferer. Auf unserem Youtube Kanal können Sie diverse Interviews und Impressionen von Livemitschnitten sehen. Viel Freude beim Stöbern. http://www.innoform-coaching.de/pages/download/video.php

  • “Drucken und Kaschieren” (Teil 7 von 8): Einige typische optische Probleme bei der Kaschierung

    “Drucken und Kaschieren” (Teil 7 von 8): Einige typische optische Probleme bei der Kaschierung

    7. Teil:  Häufig verwendete Folien zum Drucken und Kaschieren
    Einige typische optische Probleme bei der Kaschierung

    von Karsten Schröder

    Zusammenfassung
    Optische Mängel bei der Kaschierung sind heute in vielen Fällen auf Unwissenheit bei der Entwicklung neuer Produkte und Bedienung der Anlagen  zurück zu führen, da die meisten Probleme technisch eigentlich gelöst und bekannt sind. In diesem Teil diskutiert Karsten Schröder wichtige, immer wieder auftretende optische Probleme bei der Kaschierung von primären Kunststoffkaschierungen mit und ohne Aluminium oder Papier.
    Ausgehend von Falten und ihren Ursachen, werden auch Bläschen mit ihren mannigfaltigen  Ursachen beschrieben.

    1    Kaschierfalten
    Falten sind so alt wie das Kaschieren selbst – warum sind sie immer noch da? Ein Grund für Falten sind schwankende Qualitäten der Basismaterialien. Denn – wie entstehen Falten eigentlich?

    1.1    Querfalten
    Querfalten z.B. sind auf unterschiedliche Längen der Kaschierpartner zurück zu führen. Oft treten Falten im Randbereich direkt beim Zusammenführen der Folien auf. Diese stammen von so genannten Hängekanten eines oder beider Materialien.
    Gleicht der Maschinenbediener diese Hängekanten durch mehr Bahnspannung aus, so ist die Planlagetemperatur verschoben. Die Planlagetemperatur ist die Temperatur, bei der das ausgehärte  Laminat plan liegt. Diese Temperatur ist besonders für die Weiterverarbeitung von Bedeutung.
    Gleicht er diese Hängekanten nicht ausreichend durch mehr Bahnspannung aus, um die Planlagetemperatur korrekt einzustellen, kommt es zur Faltenbildung. Oft wird dieser schlechte Kompromiss in Kauf genommen in der Hoffnung: Die Wickelspannung wird es schon richten. Leider wird die Wickelspannung nur dazu führen, dass die Falte flach gedrückt wird und im besten Fall unkontrolliert verklebt. In jedem Fall können sich insbesondere bei Barriereverpackungen aus solchen Falten Delaminationen und Produktverderb ergeben – also kein „kleiner“ Mangel.
    Ein Ausweg aus dem Dilemma ist zum einen das Wissen um das Problem und eine strikte Eingangskontrolle und Spezifikation der „Hängekantentoleranz“ Hierzu gibt es bisher mehrere, nicht genormte Verfahren. Prüfanweisungen hierzu können bei Innoform bezogen werden.

    1.2    Längsfalten
    Diese Falten in Maschinenrichtung ergeben sich entweder durch Materialmängel (Durchhang in der Mitte der Rolle) oder durch Maschinenmängel/ falsche Parameter an der Anlage.
    Wird ein dünnes Material (z.B. PET-BO 12 µm) schon mit Längsfalten angeliefert, wird kein Kaschierer diese mehr ausbügeln können. In seltenen Fällen, eher schon bei dickeren, weicheren Folien, könne Breitstreckwalzen hier noch wahre Wunder verrichten, wenn mit optimaler Spannung gefahren wird – aber auch hier Achtung Planlagetemperatur.
    In der Maschine entstehen Längsfalten ebenfalls durch mehrere Ursachen- Einige sind z.B. ein-/abgelaufene Walzen und Presseure, zu hohe Bahnspannung, zu grobe Walzenprofilierung bei dünnen Folien).
    Für beide Faltenarten gilt: Vormaterialien machen einen Großteil der Problematik aus. Falten werden oft als Schönheitsfehler abgetan, können aber zu großen Fehlern bis hin zur Konsumentenschädigung durch Produktverderb führen. Falten können zusätzlich das Versiegeln von Verpackungen erschweren, wodurch sich zusätzliche Produktgefahren durch Undichtigkeiten ergeben.
    Zusammenfassend ist also festzustellen, dass eine auf die leichte Schulter genommenen Faltenproblematik durchaus ernste Folgen haben kann.  Falten sind vermeidbare und echte Kaschiermängel, die es in jedem Fall zu verhindern vermeiden gilt.

    2    Blasenbildung
    Blasen, Bläschen oder Kaschierflecken – egal wie man das Phänomen auch nennt – es ist vermeidbar und unschön. Es gibt eine Vielzahl von Ursachen für solche Fehler, die oft noch als leichte, optische Mängel (die oft toleriert werden) abgetan. Doch in vielen Fällen steckt mehr dahinter. Dort wo Bläschen zu sehen sind, ist die Verbundhaftung gestört und das kann auch zu technischem Versagen des Verbundes führen.

    2.1    Wie sehen Kaschierbläschen und Kaschierflecken aus?
    In den folgenden Abbildungen sehen Sie einige Aufnahmen aus unserem Labor, welche alle unter dem Sammelbegriff Blasenbildung zusammen gefasst werden können.

    2.1.1    Regelmäßige, gleichmäßig verteilte Bläschen

    Man sieht unter geeigneter Beleuchtung und geschultem Blick gleichmäßige, Stecknadelkopf kleine Flecken. Diese Flecken rühren von fehlendem Kontakt zwischen den beiden Kaschierpartnern her. Denn das Kleben bringt ja die beiden Partner eng zusammen, wodurch überhaupt erst eine Verbundhaftung und „Kontakttransparenz“ hergestellt wird. Ist dieser Kontakt nicht ideal, fehlt die o.g. Kontakttransparenz und das Auge nimmt diese Farbunterschiede abhängig von Farbton und Größe der Blasen wahr. Egal welche Blasen – das ist ein Alarmsignal für Kaschierer – das darf nicht passieren. Problematisch ist nur, dass einige Bläschen nach dem Aushärten verschwinden. Dieses ist durch Einwirkung von Wickeldruck bei Lösemittelfreien Kaschierungen oft der Fall, weshalb beim Kaschieren Bläschen gelegentlich unterschätzt werden.

    2.2    Blasen aufgrund rauer Druckfarben wie z.B. weiß
    Insbesondere in weiß bedruckten Bereichen findet man dieses Phänomen besonders häufig. Die Frage ist: Warum?

    In der Draufsicht sieht man deutlich die grauen Flecken im weiß hinterlegten Bereichen. Das sind die Kontakttransparenz-Aussetzer“. Wie entstehen die und wichtiger – wie vermeidet der aufmerksame Kaschierer/Drucker solche Fehler?

    Zum einen kann der Drucker eine geeignete, besonders fein gemahlene Druckfarbe verwenden, um die Rauigkeit des Farbfilms zu reduzieren, wodurch auch mit wenig Klebstoffmenge (1,8 bis 2,2 g/m² bei Lösemittelfreien Klebstoffen) gut und blasenfrei kaschiert werden kann.

    In der  Prinzipskizze wird verdeutlicht, wie sich zu wenig Klebstoff auf einer rauen Oberfläche (z.B. Druckfarbe) auswirkt.

    Im folgenden Mikrotomschnitt sieht man ein weiteres Phänomen – der Klebstoff ist stellenweise gar nicht vorhanden. Es hat gar keine Benetzung stattgefunden. Das kann u.a. durch falsche Temperaturführung beim Auftragen, ungeeignete Kaschierpartner oder eine Druckfarbe mit zu geringer Oberflächenspannung entstehen.

    2.3    Gasblasen
    Betrachtet man nun im Gegensatz dazu eine Gasblase, die durch das entstehende CO2, welches bei der Reaktion von Polyol und aromatischem Isocyanat immer entsteht, sieht der Schnitt etwas anders aus.

    Hier ergibt sich am Rand der wesentlich größeren und unregelmäßigen Blasen eine Art Wulst, die dadurch entsteht, dass das Gas den Klebstoff verdrängt. Der Klebstoff sammelt sich aufgrund seiner Kohäsionskräfte am Rand der Blase und es entsteht dieser Klebstoffwulst.

    Das gleiche Phänomen tritt auch bei partiellen Benetzungsstörungen auf, die durch Kontamination der Oberfläche oder ungeeignete Oberflächenspannung passieren kann.

    2.4    Blasen aufgrund ungleichmäßigen Auftrags im “Mikrobereich”
    Betrachtet man mittels Multiple Imaging Alignment nun einen stark vergrößerten Bereich einer Klabstofffuge im Mikrotomschnitt, so sind oft enorme Dickenschwankungen der Klebstoffschicht in der Praxis zu beobachten.
    In diesem Beispiel schwankt die Auftragsmenge auf einer Länge von 0,5 mm von 0,4 µm auf 4.4 µm (etwa = g/m²). Das kann nicht an einer falschen Walze oder schlechter Druckfarbe alleine liegen. Hier sind Rauigkeit und Oberflächenspannungseffekte mit im Spiel. Ein Lösungsansatz ist: Zunächst einmal die eigenen Produkte mit dem Mikroskop untersuchen, wie groß die Mikro-Schwankungen sind und ob Blasen sichtbar sind. Sollte das der Fall sein, kann das erneute vorbehandeln über dem Bedruckstoff schon Abhilfe schaffen, um eine möglichst hohe und gleichmäßige Oberflächenspannung zu erzielen. Zudem sollte die Viskosität des Klebstoffes variiert werden (durch Temperaturänderung), um den Einfluss dieses Parameters zu ergründen. Hier verhalten sich unterschiedliche Klebstoffe durchaus unterschiedlich auf gleichen Bedruckstoff und umgekehrt.

    2.5    Stippen als Ursache für Blasenbildung
    Auch Folien, Farb- oder Klebstoffstippen (Gels) können natürlich zu Kaschierfehlern führen, die sich als Blasen darstellen. Diese sind aber seltener pro Flächeneinheit und in der Regel deutlich größer.
    Hier mal ein Beispiel einer Stippe in einer Folienschicht im Schnitt und Draufsicht:

     

     

     

     

    2.6    Gasblasen CO2
    Die oben schon erwähnten, durch Gasabspaltung bei der chemischen Reaktion zwischen den beiden, das Polyurethan bildende Komponenten, Polyol und Isocyanat, sind oft groß (mehrere Millimeter im Durchmesser nicht kreisrund und meistens unregelmäßig verteilt.

    Diese Blasen treten vor allem bei Gasbarrierefolien wie SiOx beschichteten oder metallisierten Folien sowie EVOH Sperrschichtfolien gehäuft auf. Hier können aliphatische, Klebstoffe oder einer Reduzierung der Auftragsmenge Abhilfe schaffen. Zudem sollte das System nicht zu schnell reagieren, so dass das entstehende Gas permeiren kann. Hier ist also eine Temperung/Warmlagerung eher kontraproduktiv.

    2.7    Gasblasen aufgrund einkaschierter Luft
    Das Einkaschieren von Luft geschieht oft durch falsche Presseurhärte im Kaschierwerk. Ist der Presseur zu weich, entsteht enorme Walkarbeit, was zu Verbundstörungen führen kann. Ist er zu hart, werden Luftblasen nicht „ausgequetscht“ und dadurch nicht vermieden. Optimal wird üblicherweise eine Shore A Härte von 80 – 90° eingehalten. Was steht denn in Ihrem Wartungsplan für ein Sollwert und wie oft prüfen Sie die Härte eigentlich?

    2.8    Blasen am Rand von Druckkanten
    Sehr häufig finden sich Blasen am Rand von Druckkanten. Hier ist der Wickeldruck, insbesondere, wenn diese Kanten längs zur Laufrichtung verlaufen, geringer und Gase haben Platz sich zu sammeln. Hier helfen oft s.g. Stützlackierungen. Das sind transparente Lackierungen – meistens mit Verschnitt (= Farbe ohne Pigment), um diese Höhentoleranzen durch unterschiedliche Druckschichtdicken im Rapport oder in Längsrichtung auszugleichen.

    [Artikel Serie 1-8 “Drucken und Kaschieren” wird fortgesetzt]

     

    P.S. Am 22./23. November können Sie uns auf der 2. Flexodruck-Tagung in Osnabrück treffen.
    Dieses Mal dreht sich alles um: Ständig steigende Qualitätsansprüche und sinnvolle Lösungen?!
    Es gibt völlig andere Themen und Erkenntnisse als vor 2 Jahren. Es hat sich viel getan.

    Bilder, Videos und Experten Meinungen von der FD-Tagung stellen wir Ihnen nach der Tagung exklusiv auf unserer Facebook Seite zur Verfügung https://www.facebook.com/Innoform.Folienverpackungen?sk=app_247068188662059zur

     

    zur Innoform XING-Gruppe: “Sichere Folienverpackungen durch Prüfen, Bewerten und Wissen mit Innoform”

     

    Kontakt:

    Innoform GmbH Testservice
    Industriehof 3,
    26133 Oldenburg
    TS@innoform.de

    www.innoform.de


     

  • “Drucken und Kaschieren” (Teil 6 von 8): Die Korona-Vorbehandlung

    “Drucken und Kaschieren” (Teil 6 von 8): Die Korona-Vorbehandlung

    6. Teil: Ein Überblick über häufig verwendete Synthetikfolien zum Drucken und Kaschieren

    Die Korona-Vorbehandlung

    von  MANFRED RÖMER, ANSGAR WESSENDORF

    Um die Haftung von Materialien wie Klebstoffe oder Druckfarben auf Substraten zu ermöglichen, müssen deren Oberflächen entsprechende physikalische Benetzungseigenschaften aufweisen. Diese wiederum hängen von der Oberflächenspannung des jeweiligen Substrats ab, wobei in diesem Zusammenhang von polaren oder unpolaren Oberflächen gesprochen wird. Als ein etabliertes Verfahren, die erforderliche Spannung herzustellen, gilt die Korona-Vorbehandlung.

    Die Korona-Vorbehandlung schafft auf unpolaren Oberflächenwie PE oder PP durch Oxidation polare Gruppen und verändert (erhöht) auf diesem Wege die Oberflächenspannung. Dadurch verbessert sich die Benetzung durch Klebstoffe oder Druckfarben und damit auch deren Anhaftung auf dem Substrat. Zusätzlich zu den angesprochenen Oxidationsvorgängen findet auch noch eine »Reinigung « der Oberflächen statt und es wird eine Mikrorauhigkeit hergestellt.
    Unter der Voraussetzung korrekter Anwendung der Korona-Parameter führen diese drei Faktoren (Oxidation, Reinigung und Mikrorauhigkeit)
    zu einer guten Anhaftung von Klebstoffen oder Druckfarben.

    Vor den jeweiligen Bearbeitungsvorgängen stehen dem Drucker oder Kaschierer verschiedene
    Möglichkeiten zur Prüfung der Oberflächenspannung zur Verfügung. Üblicherweise werden hierfür Testtinten und Teststifte eingesetzt, die eine ausreichend genaue Aussage über die Oberflächenspannung erlauben.

    (Abbildung 1)
    (Abbildung 1)

    Die Entstehung der Oberflächenspannung beruht dabei auf folgendem Prinzip: Um die Moleküle aus dem Inneren der Flüssigkeit an die Oberfläche zu bringen, muß gegen die resultierenden Molekülkräfte Arbeit geleistet werden. Die Größe der Arbeit (Delta W) bezogen auf die gebildete Fläche (Delta A) ist die Oberflächenspannung. Die zu leistende Arbeit entspricht der Energie, daher wird sie auch Oberflächenenergie genannt (Abbildung 1).

    Messung der Vorbehandlung

    (Abbildung 2)

    Obwohl es selbstverständlich noch eine ganze Reihe anderer einschlägiger Verfahren gibt, haben sich die Testtinten und Teststifte in der Praxis doch auf breiter Front durchgesetzt. Es muß jedoch in diesem Zusammenhang darauf hingewiesen werden, daß sowohl Tinten wie auch Stifte nur eingeschränkt haltbar sind und daher nach dem Überschreiten der angegebenen Gebrauchsdauer keine zuverlässigen Ergebnisse mehr liefern (Abbildung 2).

    (Abbildung 3)

    Die Randwinkelmessung ist an Genauigkeit der Testtinte oder dem Teststift zweifellos überlegen, jedoch ist die Anwendung dieses Verfahrens in der täglichen Produktionspraxis
    beim Drucken und Kaschieren viel zu aufwendig. Der Randwinkel stellt dabei ein Maß für das Benetzungsverhalten dar. Um einen Randwinkel messen zu können, muß die Oberflächenspannung der Testflüssigkeit größer als die Oberflächenspannung des Festkörpers sein (z.B. Folie). Sind die Oberflächenspannung von Testflüssigkeit
    und Substrat gleich, findet eine vollständige Benetzung statt (Randwinkel = 0) (Abbildung 3).

    Für Folien müssen bestimmte Korona-Vorbehandlungsintensitäten
    erreicht werden, damit für die Bedruckung oder Kaschierung eine optimale Oberflächenspannung aufgewiesen wird:
    ● PE, PP-C > 38 mN/m
    ● PP-BO > 42 mN/m
    ● PA-C > 50 mN/m
    ● PA-BO, PET-BO > 52 mN/m

    (Abbildung 4)

    Optimale Vorbehandlung
    In Abbildung 4 wird das Prinzip der Korona-Vorbehandlung bzw. die damit verbundenen oxydativen Vorgänge dargestellt. Insgesamt wird im  Schaubild verdeutlicht, daß es sich hierbei um einen komplexen Vorgang handelt, der durch Bedienungsfehler oder mangelnder Anlagenwartung auch zu Mißerfolgen führen kann.

    (Abbildung 5)
    (Abbildung 6)

    Die Oxidationsvorgänge an der Folienoberfläche bewirken, daß dem Substrat eine größere Oberflächenenergie verliehen wird. Durch Verdampfung erhöht sich die Mikrorauhigkeit der Substratoberfläche, die entscheidend zu einer besseren Haftung von Druckfarbe und Kaschierkleber beiträgt. Doch es ist darauf zu achten, daß insbesondere bei hoher Luftfeuchtigkeit es zu einem Abbau von Molekülketten und damit zu einer Verringerung der Oberflächenspannung kommen kann. Darüber hinaus wird durch Koronavorbehandlung die Siegelfähigkeit verschlechtert (Vernetzung der Makromoleküle). Im Zusammenhang mit der Korona-Vorbehandlung spielt auch die sogenannte »Aktivierungsenergie « eine wichtige Rolle. Sie bezeichnet das Niveau der einzubringenden Energie zur Initiierung der vorher genannten Prozesse. Die notwendige Dosis der Korona-Energie (W min/m2) zur Erreichung der gewünschten Oberflächenspannung (mN/m) variiert in Abhängigkeit zu den jeweiligen Foliensubstraten. In Abbildung 5 werden einige typische Zusammenhänge zwischen Dosis und Oberflächenenergie dargestellt. Die Vorbehandlung einer Folie wirkt nicht unbegrenzt, sondern erfordert nach Ablauf einer gewissen zeitlichen Frist eine Auffrischung. Abbildung 6 stellt den »Schwund« des Vorbehandlungsgrades in Abhängigkeit zur Zeit dar.

    Viel hilft nicht viel

    (Abbildung 7)

    In diesem Zusammenhang könnte der Eindruck entstehen, diesem »Schwund« der Vorbehandlung bzw. der Oberflächenspannung mit dem Einbringen einer höheren Dosis an Korona-Energie entgegenwirken zu können. Davor muß jedoch dringend gewarnt werden, da das Einbringen einer zu hohen Dosis den gegenteiligen Effekt mit sich bringt und die Haftungseigenschaften durchaus wieder verschlechtern kann. Dies hat seinen Grund darin, daß ein zu hoher Energieeintrag die Substratoberfläche soweit abbaut, daß es zu adhäsiven Oberflächenbelägen kommt, die eine Haftung von Druckfarben oder Klebstoffen verhindern (Abbildung 7).  Im Gegensatz dazu führt eine zu niedrige Korona-Vorbehandlung zu schlechter Benetzung und damit zu schlechten Anhafteigenschaften.

    Fazit

    Grundsätzlich ist die Kenntnis der in diesem Artikel vorgestellten Zusammenhänge für Drucker und Kaschierer äußerst empfehlenswert und vorteilhaft, um die Voraussetzungen zur Schaffung optimaler Oberflächenhaftung auf den jeweils eingesetzten Substraten zu schaffen (wird fortgesetzt).

    [Artikel Serie 1-8 “Drucken und Kaschieren” wird fortgesetzt]

    Innoform auf  

    Kontakt:

    Innoform GmbH Testservice
    Industriehof 3,
    26133 Oldenburg
    TS@innoform.de

    www.innoform.de

     

  • “Drucken und Kaschieren” (Teil 4 von 8): Barrierefolien im Hinblick auf Verarbeitung und Anwendung – ein komprimierter Überblick

    “Drucken und Kaschieren” (Teil 4 von 8): Barrierefolien im Hinblick auf Verarbeitung und Anwendung – ein komprimierter Überblick

    4. Teil:  Häufig verwendete Folien zum Drucken und Kaschieren.

    BARRIEREFOLIEN IM HINBLICK AUF VERARBEITUNG UND ANWENDUNG – EIN KOMPRIMIERTER ÜBERBLICK

    von Karsten Schröder und Ansgar Wessendorf

    Im vierten Teil dieser Artikelserie über die marktüblichen Arten und Typen synthetischer Folien (Kunststofffolien) zur Herstellung von Lebensmittelverpackungen stehen die Barrierefolien, die vor allem In Kaschieranwendung einen stetig wachsenden Anteil ausmachen.

    1   Definition Barriere

    Was verstehen wir heute unter Barriere in Bezug auf Folien, die für die Veredelung von Lebensmittelverpackungen gedacht sind? Versucht man in Lexika Definitionen hierfür zu finden, so sind diese sehr vielfältig. Begriffe wie:

    – Hindernis
    – Sperre
    – Schranke
    – Wellenbrecher

    findet man z.B. in der online Enzyklopädie Wikipedia. Alles diese Begriffe beschreiben auch die Funktion, die eine Barriere für Folienverpackungen aufweisen soll.

    Eine der wesentlichen Funktionen einer Folienverpackung ist naturgemäß der Produktschutz und die Abschirmung zur Umwelt. Aber auch das Fernhalten von Stoffen aus der Folie selbst wird immer häufiger – gerade bei Lebensmittelverpackungen – zur Nebenaufgabe. So können beispielsweise „Schadstoffe“ aus weiter außen liegenden Schichten der Verpackungsfolie durch eine innen liegende Barriereschicht dazu führen, dass diese Stoffe nicht mehr auf das verpackte Gut übergehen können. In Einzelfällen kann nur so die Gesetzgebung eingehalten werden. Hierzu werde ich im weiteren Verlauf näher eingehen.

    Zunächst einige Bemerkungen zur Barriereberechnung. Grundsätzlich lassen sich heute Barriereeigenschaften von vielen Materialien rechnerisch gut abschätzen. In diesem Artikel werden wir aber mehr auf die praxisnahen Messungen und Füllgutschutz eingehen. Hier aber einige Grundlagen für den Praktiker, die jeder Barrierefolien-Hersteller kennt:

    1.    Barriere
    Die Barriere setzt an drei Schritten zusammen (mache Literaturstellen nennen auch noch eine vierte – die Absorption, die wir hier auslassen möchte, da sie in der Praxis mehr verwirrt als nützt, bei akademischen Betrachtungen aber durchaus relevant sein kann).

    a.    Adsorption – das Anlösen des „Permeanden= Stoff der durchdringen kann/wird“
    Damit ist also die Aufnahme des z.B. Gases Sauerstoff O2 gemeint, die direkt an der Oberfläche der Folie geschieht.
    b.    Diffusion – das Durchdringen des z.B. O2 durch die Folie, nachdem er in die Folie eingedrungen ist
    Hier spielt primär die Diffusionskonstante eine Rolle, die Material abhängig ist
    c.    Desorption – Das Verlassen des Sauerstoffs der Folie – das „Ausdringen“ ist der dritte, der Adsorption umgekehrte Schritt, der die gesamte Permeation bedingt/beschreibt.

     

     

     

     

     

    Abbildung 1 schematische Darstellung der Permeation von innen nach außen und von außen nach innen

    2. Einflussfaktoren:
    Die Verbesserung der Barriere ist möglich, indem man einen oder alle drei Schritte so verändert, dass der Permeand langsamer oder gar nicht mehr hindurch permeieren kann. Man kann also entweder die Adsorption reduzieren oder unterdrücken. Diese geschieht z.B. durch Metallisierungen, Lackierungen oder andere Oberflächenbehandlungen wie chemisch reaktive Prozesse. Alternativ dazu kann die Diffusion durch die Veränderung des Materials beeinflusst werden, um eine günstigere Diffusionskonstante zu erhalten muss in jedem Fall der Werkstoff gewechselt oder verändert werden. Auch das Verhältnis beispielsweise beim EVOH Copolymer zwischen Ethylen und Vinylalkohol verändert die Barriereeigenschaften aufgrund der veränderten Diffusion deutlich. Faustregel ist: Je mehr  Vinylalkohol (VOH) desto besser die Barriere gegen Sauerstoff. Je mehr Ethylen €, desto besser ist die Feuchtigkeitsunempfindlichkeit der Folie hinsichtlich Sauerstoffpermeation. Dazu werden wir im abschnitt Barrierematerialien aber detaillierter zurück kommen.

    3. Durchbruchzeit
    Als Durchbruchzeit kann man die Zeit beschreiben, die es dauert, bis genauso viele Sauerstoffatome außen in die Folie eindringen, wie innen austreten. Man beschreibt hiermit also die Zeit, die es dauert, bis ein Gleichgewichtszustand erreicht ist, der primär vom Konzentrationsgefälle des Permeanden innen zu außen und dem Klima abhängt.

    Die Steigung der Summenkurve gibt dabei die Permeationsrate an. Legt man an den linearen Verlauf eine Tangente an, so gibt der Schnittpunkt mit der X-Achse die Durchbruchzeit an, die zwischen Sekunden und einigen Tagen liegen kann und somit nur für kurz haltbare Lebensmittel bei der Barriereauslegung bedeutsam ist.

     

     

     

     

     

     

     

    Abbildung 2 Durchbruchzeit und Permeationsrate schematisch dargestellt

    2   Definition Dichtigkeit

    Als Überbegriff der Permeation fungiert die Dichtigkeit. Dichtigkeit oder Dichtheit beschreiben bei Verpackungen das gesamte System – also die Permeation durch das Material aber auch Einflüsse durch Siegelnahtfehler oder Löcher in der Verpackung. Nun beschreiben Dichtheitsprüfungen einige Zehnerpotenzen geringere Genauigkeiten des Stoffdurchtritts in eine Verpackung als die Permeation, weshalb der Schluss nahe liegt, dass zuerst einmal eine Verpackung dicht (verschlossen) und unbeschädigt sein muss, bis man über Permeation nachdenken sollte.

     

    3   Barriereeigenschaften einiger bedeutender Folien

    3.1  Das EVOH (Ethylen Vonyl Alkohol)

    Eine der bedeutendsten Barrierematerialien aus Kunststoff ist nach wie vor das EVOH, das sich durch gute Transparenz, gute Verarbeitbarkeit, hervorragende Sperrwirkung gegen Sauerstoff und Aromen sowie Thermo-Verformbarkeit auszeichnet.

    Wo Licht ist, ist leider auch Schatten. So hat das EVOH ein bisher ungelöstes Problem mit Feuchtigkeit. Natürlich gibt es Konstruktionen und Lebensmittel, die hier unproblematisch sind, dennoch ist stets drauf zu achten, dass EVOH in möglichst trockenem Zustand seine volle Barrierewirkung entwickelt. Welchen Einfluss Feuchtigkeit und Temperatur auf die Barriere von EVOH Verbundfolien haben kann, zeigt das folgende Diagramm.

     

     

     

     

     

     

     

    Abbildung 3 Folie aus dem Seminar Grundkurs Kaschiertechnologie: Einfluss von Temperatur und Feuchtigkeit auf Sauerstoffbarriere vom EVOH

    An dieser stelle werden wir nicht näher auf die enormen Einflussfaktoren auf die Barrierewirkung eingehen. Weitere Informationen finden Sie u.a. unter http://www.eval.be/web/index.asp?lang=de&ut=L .

    Für den Weiterverarbeiter, wie Drucker und Kaschierer, ist auf jeden Fall darauf zu achten, das wenig Feuchtigkeit in der Anwendung an die EVOH Schicht gelangt. Das ist auch ein Grund, warum EVOH immer im Verbund (z.B. mit PE, PP oder PA) verarbeitet wird.

    3.2  Typische Anwendungen und Eigenschaften von EVOH-Verbundfolien

    Eine typische Anwendung von EVOH Folien sind die vielfältigen MAP-Verpackungen (modified atmosphere packaging). Hier spielt das thermoverformbare EVOH seine ganze Stärke aus. Zum einen kann durch Wechsel der EVOH Copolymer-Type die Sauerstoffdurchlässigkeit (OTR=Oxygene transmission rate) eingestellt werden oder einfach über die Schichtdicke. Aufgrund seiner Verformbarkeit wird es gerne in Unterfolien eingesetzt, wenn ein besonders O2 empfindliches Produkt verpackt werden soll. Aber auch in den Deckelfolien wir traditionell EVOH eingesetzt, obwohl heute auch weniger feuchtigkeitsempfindliche Materialien wie SiOx bedampfte Folien oder Metallisierungen verwendet werden. Insbesondere für feuchte Füllgüter sind diese nicht organischen Bedampfungen (nicht aus Kunststoff bestehenden) Folien wirksamer.

    So finden sich heute u.a. in vielen Wurst-/Fleisch- oder auch Tubenlaminaten EVOH Barrieren.

    3.3  EVOH als funktionelle Barriere

    Das Lebensmittelbedarfsgegenständerecht sieht europaweit vor, dass „Schadstoffe“, die in Folien technisch unvermeidbar sind, durch s.g. funktionelle Barriereschichten gesperrt werden können, so dass dann in der Lebensmittel abgewandten Seite höhere Konzentrationen von „Schadstoffen“ toleriert werden können, wenn nachgewiesen wird, dass die funktionelle Barriere diese Stoffe vom Lebensmittel fern hält/sperrt.

    Auch in solchen Anwendungen findet EVOH Einsatz. Zum Beispiel die immer häufiger eingesetzten Wiederverschluss-Systeme, die in der Regel aus leicht migrierenden Komponenten formuliert werden, müssen in ihrer Migrationsneigung ins Füllgut gebremst werden. Diese Aufgabe übernimmt in einigen Fällen eine sehr dünne (1 – 3 µm) EVOH Sperrschicht, die quasi nebenbei natürlich auch die Sauerstoffbarriere erhöht und somit zu einer längeren Haltbarkeit des verpackten Lebensmittels führt.

    3.4  Bedampfungen

    Eine weitere Möglichkeit Folien hinsichtlich Ihrer Barriereeigenschaften erheblich zu verbessern ist die Bedampfung. Eine Untergruppe stellt hier die Aluminium-Metallisierung dar, die im großtechnischen Maßstab eingesetzt wird. Diese silbrige Folienbeschichtung führt zudem zu einem oft ausreichendem Lichtschutz.

    Zudem finden transparente, anorgansische Bedampfungsschichten immer mehr Einsatz. Hier erwähnen wir nur kurz SiOx und AlOx als die häufigsten. Aufgrund der Oxodation behalten die Stoffe ihre Sperrwirkung, werden aber hoch transparent. Sie lassen sich problemlos mit geeigneten Druckfarben bedrucken.

    Nähere Details können jederzeit von den einschlägigen herstellern oder bei Innoform erfragt werden.

    4   Barriereeigenschaften einiger handelsüblicher Folien

    Vergleicht man nun einmal typische Druckträgerfolien hinsichtlich ihrer Barriereeigenschaften, so lässt sich daran einiges an physikalischen Grundlagen erklären. Betrachten wir im Folgenden einmal diese typischen Folien in ihren handelsüblichen Dicken:

    PP-BO 20 µm

    PET-BO 12 µm

    PA-BO 15 µm= Polyamid biaxial orientiert

    PA-C 20 µm = Polyamid cast (Gießfolie nicht orientiert)

    PET-BO 12 µm mit SiOx Beschichtung

    Hier einige Daten, wie einige handelsüblichen kaschierfplien im Vergleich bei OTR- Betrachtungen abschneiden. Dieses sind nur Richtwerte und Spezialtypen weichen natürlich im Detail ab. Die Tendenz bleibt aber.

    Abbildung 4 Sauerstoffdurchlässigkeit handelsüblicher kaschier-/Druckfolien

    Betrachtet man hier die Sauerstoffdurchlässigkeit im Vergleich, so wird deutlich, dass mit zunehmender Polarität des Werkstoffes die Permeation abnimmt. Am schlechtesten schneidet das PP-BO ab, das kaum eine Sperrwirkung gegen O2 zeigt. Das PET und das PA hingegen schon als zumindest O2 Bremsen bezeichnet werden können. In den Bereich echter Barriere dringt aber nur das PET-BO mit SiOx Beschichtung vor.

    Betrachtet man nun die Wasserdampfdurchlässigkeit in der folgenden grafik, wird schnell klar, dass bei den organischen, Kunststoffschichten sich das Bild umkehrt. Bei der anorganischen SiOx Schicht hingegen, bleibt das Niveau niedrig.

    Abbildung 5 Wasserdampfdurchlässigkeit handelsüblicher kaschier-/Druckfolien

    Die genannte SiOx und AlOx Schichten sind genau wie Aluminium-Metallisierungen deshalb in ihrer dünnen Ausprägung spröder als organische/Kunststoffschichten. Das bedeutet für den Drucker und Kaschierer, aber auch für das Logistikteam besondere Sorgfalt.

    So sind beispielsweise die transparenten Barrieren nach der Herstellung „vorgespannt“ auf der Folienoberfläche. Dehnt man nun die Folie extrem, so können die dünnen Schichten brechen und teilweise Ihre Barrierewirkung verlieren.

    Abbildung 6 Schematische Darstellung der Eigenspannung von anorganischen Beschichtungen

    Natürlich kann auch eine schwer drehende Welle oder ein kratzendes Entionisierungs-Selbstkonstruktion zu kleinsten Kratzern und somit Fehlstellen führen. Diese fehlstelölen sieht man erstens nicht und zweitens sind sie nur durch aufwendige Permeationsmessungen statistisch zu erfassen.

    Die Lösung ist wie so oft Wissen und Sorgfalt beim Umgang.

    4.1  Auf welcher Seite drucke ich gerade?

    Diese Frage hat sich vielleicht schon mancher Drucker, Kaschierer und Betriebsleiter gestellt, wenn er bedampfte, transparente Folien verarbeitet hat. Hierzu zum Schluss noch ein kurzer Tipp:

    Um die zu bedruckende Seite schnell und sicher zu bestimmen benötigen Sie nicht merh als das Wissen, einen Eimer mit Wasser und einen Schwamm. Hängt die SiOx oder AlOx Rolle erst einmal in der Maschine, schlagen Sie ca. 30 cm des Rollenendes um und benetzen mit dem angefeuchteten Schwamm die Folienbahn auf der Vorder und Rückseite.

    Auf der Seite, auf der das Wasser besser benetzt, sollten Sie stets drucken, denn das ist die bedampfte Schicht, die im Zwischenlagendruck geschützt werden muss.

    Aber Achtung. Die Oberflächenspannung ist oft so hoch, dass nicht alle farben gut ausdrucken und haften. Fragen Sie hierzu Ihren Farb-/Folienlieferanten, der Ihnen geren Auskunft über getestete Systeme geben wird.

    4.2  Vorbehandlungsintensitäten

    Hier noch eine Tabelle, welche Vorbehandlungsintensitäten die besprochenen Folien haben. Als Drucker und Kaschierer wissen Sie natürlich, dass wir mindestens 38 mN/m benötigen, um gut zu Benetzen und Haftung zu erzielen. Wie wir das schaffen berichten wir in einem der nächsten Artikel.

     

     

     

     

     

     

    [Artikel Serie 1-8 “Drucken und Kaschieren” wird fortgesetzt]


    Innoform auf  

    Kontakt:

    Innoform GmbH Testservice
    Industriehof 3,
    26133 Oldenburg
    TS@innoform.de

    www.innoform.de


  • “Drucken und Kaschieren” (Teil 3 von 8): Eigenschaften und Einsatzgebiete von dünnen Druckträgerfolien und Siegelschichten

    “Drucken und Kaschieren” (Teil 3 von 8): Eigenschaften und Einsatzgebiete von dünnen Druckträgerfolien und Siegelschichten

    3. Teil : Häufig verwendete Folien zum Drucken und Kaschieren

    EIGENSCHAFTEN UND EINSATZGEBIETE VON DÜNNEN DRUCKTRÄGERFOLIEN UND SIEGELSCHICHTEN

    von Karsten Schröder und Ansgar Wessendorf

    Im dritten Teil dieser Artikelserie über marktübliche Arten und Typen synthetischer Folien zur Herstellung von Lebensmittelverpackungen stehen die Eigenschaften und Einsatzgebiete verschiedener Druckträgerfolien und Siegelfolien wie PP und PE im Zentrum der Berichterstattung.

    Folien als Druckträger
    Dünne, als Druckträger verwendete Folien, haben noch wesentlich mehr Aufgaben als »nur« den Druck aufzunehmen oder ihn im Falle des Zwischenlagendrucks zu schützen. Viel mehr spielen bei der Auswahl dieser Folien, die vor allem für Produkte wie Deckelfolienlaminate, Schlachbeutelfolien und Standbeutel eingesetzt werden, noch weitere Gesichtspunkte und Aufgaben eine wichtige Rolle. Dazu gehören die Verbesserung der Durchstoßfestigkeit, die Erhöhung von Steifigkeit, Glanzfaktor und Schmelztemperatur der Außenseite zur Vermeidung von Anhaftung an Siegelbacken; sowie Gleitfähigkeit.

    Herstellungsverfahren
    Zur Herstellung biaxial orientierter Folien können die nachfolgend kurz beschriebenen Verfahren zum Einsatz kommen:

    1. Double-Bubble-Verfahren
    Bei diesem Blasverfahren, das auch bei dem englischen Unternehmen Innovia Films zum Einsatz kommt, wird die Folie nach dem ersten Aufblasen abgekühlt und anschließend ein zweites Mal bei kontrolliert niedriger Temperatur noch einmal und stärker aufgeblasen. Hierdurch ergibt sich ein Verstreckungseffekt sowohl in Längs- als auch in Querrichtung. Derart hergestellte Folien werden auch als »ausgewogene Folien« (»balanced films«) bezeichnet, da sie ähnliche Eigenschaften sowohl in Längs- als auch in Querrichtung aufweisen.

     

     

     

     

    2. Tenter Frame-Verfahren
    Bei diesem Gießverfahren wird die hergestellte Folie zunächst längs und danach quer verstreckt, was nacheinander oder auch gleichzeitig erfolgen kann. Nach dem Verstrecken erhält die Folie eine Thermofixierung bei geeigneter Temperatur, damit sie bei späterer Erwärmung während der Verarbeitung oder Anwendung nicht in die ursprüngliche Form zurückschrumpft. Allerdings läßt sich ein derartiger Schrumpf nicht völlig vermeiden, was sich vor allem beim Siegeln bemerkbar machen kann.

     

     

     

     

     

     

    Biaxial orientiertes Polypropylen

    Zu den Vorteilen von biaxial orientierter Polypropylenfolie (PP-BO) gehören verbesserte Transparenz, optimierte Barriereeigenschaften, erhöhte Festigkeit bei Reduktion der Dehnbarkeit, hoher Glanz, gute Durchstoßfestigkeit, Knickbruchunempfindlichkeit, verbesserte Ölbeständigkeit sowie hohe Wasserdampfdichtigkeit und Steifigkeit.

    Es muß allerdings darauf hingewiesen werden, daß PP-BO über bestimmte, vor allem für Lebensmittelverpackungen wichtige Eigenschaften nicht verfügt. Dazu gehören Aromadichtigkeit, Barriefähigkeit gegen Sauerstoff sowie Sterilisierbarkeit. Darüber hinaus erfordert die niedrige Oberflächenspannung des Materials vor der Bedruckung eine entsprechende Vorbehandlung zur Verbesserung der Anhaftung von Farben und Lacken.

    Trotz hoher Dauergebrauchstemperatur ist der relativ niedrige Schmelzpunkt des Materials zu berücksichtigen, was Probleme bei Siegelungen oder Wärmebehandlung jeglicher Art verursachen könnte. In diesem Fall bietet sich das Ausweichen auf biaxial orientiertes Polyethylenterephtalat (PET-BO) an. Die typischen Stärken von PP-BO Folien für Folienverpackungen liegen in einem Bereich von 12 bis 50 µm, während für Kaschierungen sehr oft Folien mit einer Stärke von 20 µm eingesetzt werden.

    Biaxial orientiertes Polyethylenterephtalat
    Ein echter Klassiker im Bereich Druck und Kaschierung ist biaxial orientiertes Polyethylenterephatalat (PET-BO), das im Tender Frame-Verfahren hergesetellt und zumeist in Stärken von 12 µm verwendet wird. Aufgrund der Schmelzviskositätseigenschaften und der Feuchtempfindlichkeit des PET können diese Folien nicht im Blasverfahren hergestellt werden.

    PET-BO zeichnet sich durch ein ausgewogenes, für Lebensmittelverpackungen ideal geeignetes Eigenschaftsprofil aus. Dies ist dem PP-BO durchaus vergleichbar, wobei PET-BO über eine bessere Sauerstoffbarriere, geringere Wasserdampfbarriere sowie eine gute Aromadichtigkeit gegen viele Aromastoffe verfügt. Bedingt durch seine hohe Oberflächenspannung ist das Material sehr gut bedruckbar und hat darüber hinaus einen sehr hohen Schmelzbereich (>250 °C).

    Vor allem die guten thermischen Eigenschaften begründen den Einsatz in vielen Gebieten, wo auch PP benutzt werden könnte. Zu den Anwendungsmöglichkeiten im Verpackungsbereich gehören unter anderem heißsiegelfähige Folie für Deckel; Barrierefolien für Schlauch- und Standbeutel sowie Mattfolienverpackungen.

    Biaxial orientierte Polyamidfolie
    Biaxial orientierte Polyamidfolie (PA-BO) kann sowohl im Double Bubble als auch im Tenter Frame-Verfahren hergestellt werden. Obwohl sie von allen in diesem Artikel vorgestellten Folienmaterialien das teuerste ist, so können sich Verarbeitungsschwierigkeiten ergeben, wenn das spätere Produkt über Eigenschaften wie hohe Durchstoßfestigkeit; gute Sauerstoffbarriere sowie hohe Zähigkeit verfügen soll. Werden jedoch einige Grundvoraussetzungen hinsichtlich der Anforderungen dieses Materials wie auch dessen Verarbeitung beachtet, so lassen sich auch PA-BO-Folien problemlos bedrucken und kaschieren:

    1. Hohe Wasseraufnahme Aufgrund des feuchtigkeitsbindenden Verhaltens von Polyamid muß darauf geachtet werden, die Materialrollen unbedingt mit anderem Folienmaterial (z.B. PE) einzuschlagen. Andernfalls quillt PA-BO auf und verändert seine Dimensionen spürbar. In diesem Zusammenhang wurden in der Praxis schon Längenänderungen von bis zu 1% festgestellt.

    2. Affinität zu Lösemitteln Auch Lösemittel wie Ethanol oder Ethylacetat werden von PA-BO aufgenommen, was besondere Anforderungen an die entsprechenden Trocknungsprozesse stellt.

    3. Bildung von Oligomeren an der Oberfläche Bei einigen Typen vonPA-BO kommt es zur Bildung von Oligomeren an der Oberfläche, worunter die Haftung von Klebstoffen oder Druckfarben trotz hoher Oberflächenspannung leiden kann. Hier hilft oftmals eine moderate Korona-Vorbehandlung, die in diesem Fall jedoch hauptsächlich reinigend wirken soll.

    Polyethylenfolien
    Folien aus Polyethylen (PE) werden zumeist als Siegelschichten, gelegentlich jedoch auch als Druckträger-Verbundfolien (z.B. PE/PE) verwendet, die hauptsächlich für Hygiene- und Tiefkühlanwendungen zum Einsatz kommen. Aufgrund der Nicht-Orientieruung der PE-Folien ist die Verarbeitung im Tiefdruck oft schwierig und setzt sehr zugsteifge Materialien voraus, wie sie beispielsweise aus dem Bereich der Verpackungen für Papiertaschentücher bekannt sind. Zumeist werden PE-Folien jedoch im Flexoverfahren mit Zentralzylindermaschinen bedruckt, da dort die geringere Zugfestigkeit durch die Einzylinderanordnung keine Probleme verursacht.

    Das hauptsächliche Einsatzgebiet von Polyethylenfolien ist jedoch die Siegelschicht. Dies ist vor allem dann der Fall, wenn eine Siegelschicht mit einer Stärke von mehr als 1 µm benötigt wird, wie sie durch Lackierungen oder Coextrusion von PP-BO realisiert werden.

    PE-Materialien werden nach Dichteklassen unterschieden, die sich allerdings oftmals überlappen:

    Bezeichnung     Dichtebereich [g/cm³] [als Kasten oder Tabelle formatieren]
    Plastomere              <0,90
    PE-VLD                     0,900-0,910
    PE-LD                        0,915–0,935
    PE-MD                      0,935–0,945
    PE-LLD                     0,860–0,960
    PE-HD                      0,945–0,965
    Zum Vergleich: PP    ca. 0,90

    Je niedriger die Dichte ist desto geringer ist die Kristallinität, was bei Kunststoffen die Anordnung von Molekülen bzw. Atomen oder Ionen in einer gleichmäßigen, sich wiederholenden Struktur bezeichnet. Dabei gilt: Je höher die Transparenz desto flexibler die Materialien. Darüber hinaus sinkt bei abnehmender Dichte auch der Erweichungspunkt, was sich insbesondere beim Siegeln positiv auswirken kann.

    Polyethylenfolien werden heute grundsätzlich als Mischungen und meistens im Coextrusionsverfahren hergestellt, was in der Folge das Angebot an PE-Siegelschichten sehr breit und unübersichtlich macht. Der Anwender, Drucker oder Kaschierer kann eigentlich nur über die Spezifikation der gewünschten Funktion und Materialeigenschaften vergleichbare Qualitäten verschiedener Hersteller beziehen. Eine Spezifikation der Rezepturen führt in der Regel nicht zur Standardisierung, da die Verarbeitungsparameter dieses teilkristallienen Werkstoffs die späteren Eigenschaften wesentlich vorbestimmen.

    Heute sind Metallocene-PE-Folientypen zu einem Industriestandard geworden. Eine besondere Gruppe sind hingegen die Plastomere, die wegen ihrer extrem niedrigen Dichte besonders niedrige Schmelzpunkte aufweisen. Hier haben einige Spezialtypen zudem sehr gute Hot-Tack Eigenschaften und siegeln hervorragend durch kontaminierte Siegelbereiche.

    Den Verarbeiter bereiten diese Folien jedoch wegen deren Plastizität und damit einhergehenden niedrigen Reibwerte (Stumpfheit) einige Probleme. Daher werden oft große Mengen an Gleitmitteln zugegeben, was bei der späteren Auswahl von Durckfarben und Klebstoffen berücksichtigt werden muß. Sehr niedrige Oberflächenspannungen, wie sie für alle Polyolefine (PE und PP) charakteristisch sind, bedingen eine gute Vorbehandlung mittels Corona, Beflammung oder Ozon.

    Zusammenfassend läßt sich sagen, das PE-Folien die klassischen Materialien für Siegelschichten darstellen, während sie als Druckträger eher selten eingesetzt werden. Doch auch hier gilt: Keine Regel ohne Ausnahme.

    Polypropylen
    Polypropylen (PP) unterscheidet sich zwar nur durch eine zusätzliche CH3-Gruppe in der Monomereinheit von PE, verfügt aber dennoch über grundlegend andere Eigenschaften. Nicht orientierten Siegelfolien kommen immer dann zum Einsatz, wenn Folien mit höherer Temperaturbeständigkeit benötigt werden. Ein Hauptanwendungsgebiet im Bereich der Lebensmittelverpackungen sind sterilisierfeste Folien, die Temperaturen von bis zu 140 °C aushalten. Hierfür ist jedoch PE nicht geignet, da dessen Schmelzpunkt darunter liegt.

    Hinsichtlich der Dichtewerte sind die verschiedenen PP-Materialien nahezu identisch und es treten kaum Variationen auf. Es wird grundsätzlich zwischen vier verschiedenen Typen von PP unterschieden:

    Typen von PP

    A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A PP Homopolymer
    A-A-B-A-A-A-B-A-A-B-A-A-A-A-B-A-A-A      PP statistisches Copolymer
    A-A-B-B-B-B-A-A-A-B-B-B-A-A-A-A-A-A       PP heterophasisches Copolymer
    A-A-B-B-B-A-A-B-A-A-B-B-B-A-A-B-A-A-A PP statistisch-heterophasisches Copolymer

    A = Propylen-Monomer
    B = Ethylen-Comonomer

    1. PP Homopolymer Dieses »reine« PP zeichnet sich durch gute Transparenz und Steifigkeit aus. Ein Nachteil ist allerdings der recht hohe Gasübergangsbereich, wodurch das Material nicht für Tiefkühlanwendungen eingesetzt wird.

    2. PP statistisches Copolymer Diese Copolymer aus PP und PE siegelt bei etwas niedrigeren Temperaturen und ist weicher als das PP Homopolymer. Darüber hinaus ist es nicht so steif und weniger kälteempfindlich. Den Namen erhielt es durch die statistisch regellose Verteilung der Ethylenanteile.

    3. PP heterophasisches Block-Copolymer Hierbei handelt es sich um ein Copolymer mit einem Gummianteil, der sich in Blöcken und einer zweiten Phase ausbildet, wodurch sich eine Trübung aber auch sehr gute dynamische Festigkeiten ergeben können. Dieses heterophasisches Block-Copolymer wird auch als HeCo-PP bezeichnet.

    PP statistisch-heterophasisches Copolymer
    Dieses RaHeCo PP ist eine Kombination aus statistischem und heterophasischem Copolymer, das Eigenschaften beider PP-Typen in sich vereint. Es ist relativ transparent, weich und zäh, wodurch es als Siegelschicht auch für Tiefkühlanwendungen geeignet ist.

    [das Thema wird im nächsten Beitrag, “Drucken und Kaschieren” Teil 4 von 8, fortgesetzt]

    Innoform auf  

    Kontakt:

    Innoform GmbH Testservice
    Industriehof 3,
    26133 Oldenburg
    TS@innoform.de

    www.innoform.de